
Federated decentralized trusted dAta Marketplace for Embedded finance

D4.2 ­ Pricing, Trading and Monetization Techniques I

Title D4.2 ­ Pricing, Trading and Monetization Techniques I

Revision Number 1.2

Task reference T4.2 T4.3 T4.4

Lead Beneficiary FTS

Responsible Geert Machtelinckx

Partners ENG, EUBA, FTS, INNOV, JOT, JRC, TRB, UBI, UIA

Deliverable Type DEM

Dissemination Level PU

Due Date 2024­03­31 [Month 15]

Delivered Date 2024­05­23

Internal Reviewers IDSA INNOV GFT

Quality Assurance UPRC

Acceptance Coordinator Accepted

Project Title FAME ­ Federated decentralized trusted dAta Marketplace for Embedded finance

Grant Agreement No. 101092639

EC Project Officer Stefano Bertolo

Programme HORIZON­CL4­2022­DATA­01­04

This project has received funding from the European Union’s Horizon research and innovation programme under Grant
Agreement no 101092639

©FAME Consortium

Ref. Ares(2024)3698292 - 23/05/2024

Revision History

Version Date Partners Description

0.1 2024­02­02 FTS EUBA JOT TRB Table of Contents

0.2 2024­03­02 FTS EUBA JOT TRB Integrated version with contributions

0.3 2024­04­02 FTS EUBA JOT TRB Version for peer review

0.4 2024­05­21 FTS EUBA JOT TRB Uptate after peer review

0.5 2024­05­22 FTS EUBA JOT TRB Version for QA

1.0 2024­05­22 FTS EUBA JOT TRB Reviewed version

1.1 2024­05­22 FTS EUBA JOT TRB Version with rework

1.2 2024­05­23 FTS EUBA JOT TRB Version for submission

Views and opinions expressed are those of the author(s) only and do not necessarily reflect those of the European Union.
Neither the European Union nor the granting authority can be held responsible for them.

ii

Definitions

Acronyms Definition

AAI authentication authorization infrastructure

AI Artificial Intelligence

AID Asset Identifier

AP Asset Pricing

API Application Programming Interface

ERC Ethereum Request for Comments

FAME Federated decentralized trusted dAta Marketplace for Embedded finance

FDAC Federated Data Assets Catalogue

GOV Operational Governance

HTTP HyperText Transfer Protocol

JSON JavaScript Object Notation

MVP Minimum Viable Product|Platform

NLP Natural language processing

NLTK Natural Language Toolkit

PAT Pricing Advisory Tool

PTM Pricing, Trading and Monetisation

REST Representational State Transfer

SAT Similarity Advisory Tool

SS Semantic Search

SSE Semantic Search Engine

TID Trade Account Identifier

TM Trade and Monetisation

URL Uniform Resource Locator

iii

 1 of 40

Executive Summary
In the context of FAME, “Pricing, Trading and Monetization Techniques” are fundamental to enable

the fundamental feature of the federated Marketplace to provide a way to exchange assets between

producers and consumers.

This deliverable is the first tangible result of the combined efforts done under “Pricing, Trading and

Monetization Techniques”. It describes the artefacts created in the tasks T4.2 “Accounting, Trading,

Pricing and Monetization Schemes”, T4.3 “Smart Contracts for Programmable Trading and

Monetization” and T4.4 “Semantic Search for Trading and Valuation of Data Assets” in the form of

an integrated demonstrator that is documented in the present document.

The three tasks described are focusing on separate modules that are not tightly coupled.

Task T4.2 is about both a Price Advisory Tool and Similarity Analysis tool, helping data asset owners

to set the right pricing to their digital asset. T4.3 delivers smart contract tooling that enables the

creation of a digital asset offering (represented as a token on the platform) as well as the execution of

a trade on a digital asset between consumer and seller. T4.4 is allowing a user to search for a digital

asset, starting from the FDAC’s asset metadata.

The document outlines the logic and technical specifications of the very first release of the software

modules provides by these tasks.

Key Insights:

• The prototypes are as such not closely interrelated, but all contributed to an overall service

offering that will be made available through a ‘Dashboard’, developed in WP2.

• All prototypes integrate closely with other tasks and deliverables such as Federated Catalogue

of Data Assets, Blockchain-based Data Provenance Infrastructure and Operational

Governance, developed in WP4.

• All also relate to work in Platform Architecture, Data Marketplace Platform Integration,

Federated AAI Infrastructure, Unified Security Policy Management, and Data Provenance

Infrastructure, developed inWP3.

In particular, the document provides information related to:

Modules Overview: Describes the different modules’ role / contribution to the FAME federation

marketplace.

Components Specification: Details the technical specifications of each module's components.

Modules Demonstration: Offers instructions on setting up the prototype and provides a visual

demonstration of the workflows.

The document also provides an Installation Guide for the Smart Contract Main Infrastructure Server

and emphasizes the MVP nature of the current release, with future enhancements planned for the

FAME project's second phase.

D4.2 ­ Pricing, Trading and Monetization Techniques I Rev. 1.2

FAME Project No. 101092639 ©FAME Consortium

 2 of 40

Table of Contents
1. Introduction .. 4

1.1. Objective of the Deliverable ... 4

1.2. Insights from other Tasks and Deliverables .. 5

1.3. Structure .. 5

2. Modules Overview ... 7

2.1. Trading and Monetization ... 7

2.1.1. Trading and Monetization C4 Component-level Architecture .. 7

2.1.2. Components and APIs for ‘Trade and Monetisation’ .. 17

2.2. Price Advising ... 20

2.2.1. C4 Component-level Architecture ... 20

2.2.2. API for Pricing Advisory Tool (PAT) ... 21

2.2.3. Similarity Analysis Tool (SAT) ... 26

2.3. Semantic Search Engine .. 27

2.3.1. C4 Component-level Architecture ... 27

2.3.2. Components ... 27

2.3.3. External components .. 28

2.3.3. API Endpoint Structure .. 28

2.3.4. Integration with FDAC .. 29

2.3.5. State of PAT Integration .. 30

2.3.6. Search Interface & User Journey ... 30

2.3.7. Baseline Technologies in Use .. 31

3. Modules Installation Guide .. 33

3.1 Price Advisory Tool Installation Guide ... 33

3.2 Trading and Monetization Installation Guide .. 33

3.2.1. Overview .. 33

3.2.2. Development Getting Started ... 33

3.2.3. Usage .. 34

3.3. Semantic Search Engine Installation Guide .. 35

4. Conclusions .. 36

Annex 1 .. 37

Components of APIs for Trade & Monetisation .. 37

D4.2 ­ Pricing, Trading and Monetization Techniques I Rev. 1.2

FAME Project No. 101092639 ©FAME Consortium

 3 of 40

List of Figures
Figure 1 - Context Diagram showing Smart Contracts and Tokenisation Subsystem 4

Figure 2 - Tasks / deliverable relationship ... 5

Figure 3 - Modules Overview .. 7

Figure 4 - Context Diagram for Federated Data Asset Trading Platform .. 8

Figure 5 - Smart Contract & Tokenisation Subsystem Level 2 Diagram .. 9

Figure 6 - Open API Specification REST API for T&M ... 11

Figure 7 - ERC-1155 Data Access Token Smart Contract .. 12

Figure 8 - ERC-721 Offering Token Contract ... 13

Figure 9 - Bourse Contract ... 14

Figure 10 - Escrow Contract .. 16

Figure 11 - Set up Trading API .. 17

Figure 12 - Submit Purchasing Order Sequence Diagram ... 18

Figure 13 - Submit Purchasing Order API ... 18

Figure 14 - Check Clearance API .. 19

Figure 15 - List Cleared Items API .. 19

Figure 16 - Price Advising C4 Component-level Architecture.. 21

Figure 17 - Price Advisory Sequence Diagram ... 22

Figure 18 - Publish Offering Screen .. 23

Figure 19 - Asset-type specific questionnaire .. 23

Figure 20 - Price Recommendation Interface .. 24

Figure 21 - SAT formulation ... 26

Figure 22 - Semantic Search Engine C4 Component-level Architecture .. 27

Figure 23 - Semantic Search Engine API endpoint ... 29

Figure 24 - Integrated SSE / FDAC API interface... 30

Figure 25 - Semantic Search Interface (1) ... 30

Figure 26 - Semantic Search Interface (2) ... 31

Figure 27 - Price Advisory API services ... 33

 List of Tables
Table 1 - Retrieve Trading History API ... 20

Table 2 - List of suggested questions for pricing data collection .. 24

D4.2 ­ Pricing, Trading and Monetization Techniques I Rev. 1.2

FAME Project No. 101092639 ©FAME Consortium

 4 of 40

1. Introduction

1.1. Objective of the Deliverable

One of the main objectives of the FAME project is to design and implement pricing, trading, and

monetization mechanisms for a federated data marketplace infrastructure. These mechanisms are

integral elements of the FAME platform. In this context, this document is mainly a factsheet

describing the software prototype released as deliverable D4.2 “Pricing, Trading and Monetisation”.

This is the first of two scheduled releases: it provides the functionalities underpinning the basic

FAME Platform in its minimum viable product (MVP) configuration. The second release, which is

due by M27, will include additional features and will have a tighter integration with the other Platform

modules.

In its current form, the D4.2 prototype has been tested and demonstrated in the scope of the MVP

Platform.

The output of T4.2 is Pricing Advisory Tool, known as the PAT, a data-driven pricing advisory

mechanism leveraging issuer-provided data, stakeholder survey responses, and historical pricing

realization analytics. It is a tool to navigate producers in setting relevant price considering the intrinsic

value of digital asset leaving the final price decision on producer solely. PAT contains back-end

functionalities for price-advice calculation, and it will include Similarity Analysis Tool, known as

SAT for which historical sales have been executed. Current version is based on static pricing

mechanism and for next are dynamic (demand-based) as well as skinning and penetration pricing

mechanisms planned.

The deliverable of T4.3 (smart contracts for Trade and Monetisation) contains a partially integrated

demonstrator has the back-end functionalities available to set up the smart contracts that will allow

the creation of an offer and start trading, i.e. exchanging the data asset with a payment token in

different payment schemes (over the counter, pay as you go, pay as you use, subscription). The aim

is to have this back-end feature used in a user dashboard / front-end.

Figure 1 - Context Diagram showing Smart Contracts and Tokenisation Subsystem

D4.2 ­ Pricing, Trading and Monetization Techniques I Rev. 1.2

FAME Project No. 101092639 ©FAME Consortium

 5 of 40

The semantic search component (created through task T4.4), focuses on providing an intuitive and

effective search functionality within the FAME platform. It processes user queries to deliver relevant

FDAC data assets, leveraging semantic analysis to ensure that the results align with the user's search

intent. This component supports the wider aim of making it easier to find data assets, setting the stage

for later combining it with the PAT to create a full-fledged asset trading and pricing approach.

1.2. Insights from other Tasks and Deliverables

Deliverable D4.2 is the result of activities performed in the scope of 3 tasks: T4.2 “Accounting,

Trading, Pricing and Monetization Schemes”, T4.3 “Smart Contracts for Programmable Trading and

Monetization” and T4.4 “Semantic Search for Trading and Valuation of Data Assets”. It’s built on

top of foundational tasks such as T3.3 “Federated Catalogue of Data Assets”, T4.1 “Decentralized

Data Provenance and Traceability”, T3.1 “Federated AAI Infrastructure”, T4.5 “Business and

Operational Models for the FAME Marketplace”.

The tasks are executed following an architectural design that was defined in T2.2 “Platform

Architecture and Technical Specifications” and will be integrated through T2.3 “Data Marketplace

Platform Integration”.

These interdependencies of relationships are depicted in below Figure 2.

Figure 2 - Tasks / deliverable relationship

1.3. Structure

This document consists of five sections.

D4.2 ­ Pricing, Trading and Monetization Techniques I Rev. 1.2

FAME Project No. 101092639 ©FAME Consortium

 6 of 40

1. Introduction, i.e. this introductory section that sets the scene of the deliverable.

2. Module Overview, which sets the context (with reference to the FAME Solution Architecture

from deliverable D2.2), provides the general description of the module from the functional

perspective, identifies the software Components, and explains their relationship with other

modules of the FAME Platform.

3. Components Specification, which provides the complete technical specifications of each of

the module’s Components. These include the baseline technologies, interfaces and data

structures that are used internally – for data persistence – and externally – for interoperability.

4. Module Demonstration, which gives instructions on how to set up the prototype in a suitable

environment and leads the reader through a visual demonstration – represented by screenshots

– within a partially integrated FAME Platform.

5. Conclusions, which provides a recap of the main achievements and the outlook for future

activities.

D4.2 ­ Pricing, Trading and Monetization Techniques I Rev. 1.2

FAME Project No. 101092639 ©FAME Consortium

 7 of 40

2. Modules Overview

The Blockchain-based Pricing, Trading and Monetization (PTM) module of the FAME Platform is

responsible for trading activities.

In the C4 architecture model of the FAME Solution Architecture, the three relevant modules are

classified as a Container named “Assets Trading & Monetization” (AT&M in brief), “Asset Pricing”

(AP in brief) and “Semantic Search” (SS in brief).

Figure 3 - Modules Overview

2.1. Trading and Monetization

2.1.1. Trading and Monetization C4 Component-level Architecture

The C4 model is a framework for visualizing the architecture of a software system, and it consists

of four levels: Context, Container, Component, and Code.

2.1.1.1. Level 1 (Context) Diagram

The high-level overview of the system, its users (or actors), and their interactions are depicted

below. The platform comprises seven main subsystems and interacts with two actors and one

external database. The system's main purpose is to enable the trading of data assets between the

actors "Data Providers" and "Data Consumers."

D4.2 ­ Pricing, Trading and Monetization Techniques I Rev. 1.2

FAME Project No. 101092639 ©FAME Consortium

 8 of 40

Figure 4 - Context Diagram for Federated Data Asset Trading Platform

Actors:

1. Data Providers: These actors offer data assets for trading on the platform.

2. Data Consumers: These actors browse and buy the offered data assets.

External Systems:

1. External Trading Data Assets Catalog: This external system exchanges data assets

information with our system.

2. Legal Compliance Subsystem: This subsystem ensures legal compliance for the platform.

Subsystems:

1. Smart Contracts and Tokenisation Subsystem: This is the main subsystem we are focusing

on. It handles the creation and management of smart contracts and tokens. It interacts with the

Catalog Subsystem to receive asset metadata links and proofs, and it interacts with the

Monetisation Subsystem for token monetisation.

2. Access Control Subsystem: This subsystem manages the access control to the platform.

3. Asset Pricing Subsystem: This subsystem handles the pricing of assets.

D4.2 ­ Pricing, Trading and Monetization Techniques I Rev. 1.2

FAME Project No. 101092639 ©FAME Consortium

 9 of 40

4. Catalog Subsystem: This is the central subsystem that manages data assets offered by Data

Providers. It interfaces with all the actors and the majority of other subsystems to handle

trades, pricing, access control, legal compliance, and asset metadata.

5. Monetisation Subsystem: This subsystem manages the monetisation of tokens in the

platform.

6. Trading Subsystem: This subsystem manages trades on the platform.

7. Hyperledger Besu Blockchain, which is used as a decentralized database to track and trace

trades and for interaction with the Smart Contracts and Tokenisation Subsystem.

2.1.1.2. Level 2 (Container) Diagram

The following diagram represents the container level of the C4 model, zooming into the "Smart

Contracts and Tokenization Subsystem" of the overall Federated Data Asset Trading Platform. At

this level, we focus on the specific responsibilities and functionalities of the subsystem, breaking it

down into multiple interacting components.

Figure 5 - Smart Contract & Tokenisation Subsystem Level 2 Diagram

The diagram illustrates the following containers:

1. REST API: An open standards API gateway that other FAME actors interact with.

2. Payment Token Contract: A token payment system that implements the ERC-20 standard.

D4.2 ­ Pricing, Trading and Monetization Techniques I Rev. 1.2

FAME Project No. 101092639 ©FAME Consortium

 10 of 40

3. Data Access Token Contracts: Represents the ERC-1155 tokens that provide a

representation of data access ownership for different business models.

4. Offerings Token Contract: Implements ERC-721 standard where tokens represent the

offerings that are added to the catalogue, which makes it available for Data Access Tokens to

be purchased.

5. Bourse Contract: Smart contract that handles the swapping of currency tokens for data access

tokens.

6. Escrow Contract: An escrow smart contract that handles holding of Payment Tokens to have

a secure and trusted way of depositing/withdrawing for certain business models such as pay-

as-you-use.

The REST API container interacts with all other containers within the system. Each of these

containers are setup in the Hyperledger Besu blockchain, which is an external system represented

as a database in the diagram. The interactions with the blockchain involve the provision and tracing

of transactions.

The Other FAME Actors represent external entities that interact with the system by calling the

REST API.

2.1.1.3. Level 3 Component Diagram

At this level, the goal is to provide even more detail, breaking down the selected containers into its

constituent components.

Open API Specification REST API

Figure 6 provides a detailed view of the Open API Specification REST API container, breaking it

down into its individual components.

D4.2 ­ Pricing, Trading and Monetization Techniques I Rev. 1.2

FAME Project No. 101092639 ©FAME Consortium

 11 of 40

Figure 6 - Open API Specification REST API for T&M

Figure 6 includes the following components:

1. REST API Router: This is the main component that handles routing of requests. It's

implemented using the Express.js with Nestjs wrapper web application framework.

2. Payment Controller: This component handles requests related to the Payment Token

Contract.

3. Data Access Controller: This component handles requests related to all Data Access Token

Contracts.

4. Offering Controller: This component handles requests related to the Offering Token

Contract.

5. Bourse Controller: This component handles requests related to Bourse Contract and Escrow.

The REST API Router routes requests to the appropriate controller based on the request's details.

Each of these controllers interacts with the Hyperledger Besu blockchain, which is an external

system represented as a database in the diagram. The interactions with the blockchain involve

various operations related to the specific functionality of each controller.

ERC-1155 Data Access Token Smart Contracts

Figure 7 provides a detailed view of the ERC-1155 Data Access Token Smart Contract container,

breaking it down into its individual components.

D4.2 ­ Pricing, Trading and Monetization Techniques I Rev. 1.2

FAME Project No. 101092639 ©FAME Consortium

 12 of 40

Figure 7 - ERC-1155 Data Access Token Smart Contract

The diagram includes the following components:

1. ERC-1155 Token: This is the main component that implements the standard ERC-1155 token

for data access.

2. Submissions/Order: This component handles the purchasing of data access tokens.

3. Revoke Data Access: This component handles the destruction of data access tokens (based

on some requirements).

4. Token Approval: This component handles token approval for third parties. It allows the

Trading Contract to transfer assets.

5. Check Clearance: This component provides information on whether the passed asset id is

owned by the passed trading accounts.

6. List Cleared Items: This component provides information on which asset ids the passed

trading account owns.

The REST API and the Proxy Contracts interact with their respective ERC-1155 Data Access

Token Contract component, which in turn implements the functionality of the other components.

Each of these components interacts with the Hyperledger Besu blockchain, which is an external

system represented as a database in the diagram. The interactions with the blockchain involve various

operations related to the specific functionality of each component.

The ERC-1155 Data Access Token Contract component also interacts with the Asset Metadata

storage, storing references to assets metadata and a proof of asset metadata integrity.

D4.2 ­ Pricing, Trading and Monetization Techniques I Rev. 1.2

FAME Project No. 101092639 ©FAME Consortium

 13 of 40

ERC-721 Offering Smart Contract

Figure 8 provides a detailed view of the ERC-721 Offering Smart Contract container, breaking it

down into its individual components.

Figure 8 - ERC-721 Offering Token Contract

D4.2 ­ Pricing, Trading and Monetization Techniques I Rev. 1.2

FAME Project No. 101092639 ©FAME Consortium

 14 of 40

The diagram includes the following components:

1. ERC-721 Offering Token: This is the main component that implements the standard ERC-

721 token for offerings.

2. Offerings: This component initializes a blockchain trading environment for a given offering

by minting a ERC-721 token for it.

3. Remove Offering: This component handles the destruction of an offering id.

The REST API interact with the ERC-721 Offering Token Contract component, which in turn

implements the functionality of the other components. Each of these components interacts with the

Hyperledger Besu blockchain, which is an external system represented as a database in the diagram.

The interactions with the blockchain involve various operations related to the specific functionality

of each component.

Bourse Contract

Figure 8 provides a detailed view of the Bourse Contract container, breaking it down into its

individual components.

Figure 9 - Bourse Contract

D4.2 ­ Pricing, Trading and Monetization Techniques I Rev. 1.2

FAME Project No. 101092639 ©FAME Consortium

 15 of 40

The diagram includes the following components:

1. Bourse Contract: This is the main component that handles the swapping of ERC-20 Payment

Tokens and ERC-1155 Data Access Tokens.

2. Direct Sell: This component executes trades based on contract terms while validating the

terms of a trade.

3. Retrieve Trading History: This component provides information on the history of a passed

offering id based on the previous transactions.

The REST API interacts with the Bourse Contract component, which in turn implements the

functionality of the Direct Sell and Retrieve Trading History components. The Direct Sell is

called automatically when called Submissions/Order and each of these components interacts with

the Hyperledger Besu blockchain, which is an external system represented as a database in the

diagram. The interactions with the blockchain involve various operations related to the specific

functionality of each component.

The Bourse Contract component also interacts with the Payment Token, Data Access Token and

Escrow Contract containers, handling the payment and transfer of token ownership respectively.

In addition to the above-mentioned functionalities, Bourse contract is also setup for providing future

support for first come first served bidding in demand driven auction system.

Escrow Contract

Below diagram provides a detailed view of the Escrow Contract container, breaking it down into

its individual components.

D4.2 ­ Pricing, Trading and Monetization Techniques I Rev. 1.2

FAME Project No. 101092639 ©FAME Consortium

 16 of 40

Figure 10 - Escrow Contract

The diagram includes the following components:

1. Escrow Contract: This is the main component that handles the holding and using the ERC-

20 Payment Tokens.

2. Use Asset: This component uses X amount of Payment Tokens based on the used amount of

services by the user and transfers those tokens to the Beneficiary.

3. Deposit: This component is used to deposit X amount of Payment Tokens to the Escrow

when purchasing access token.

4. Withdraw: This component is used to withdraw X amount of Payment Tokens by the user.

The REST API interacts with the Escrow Contract component, which in turn implements the

functionality of the Use Asset, Deposit and Withdraw components. The Use Asset and Deposit

are called automatically based on user behavior and each of these components interacts with the

Hyperledger Besu blockchain, which is an external system represented as a database in the

diagram. The interactions with the blockchain involve various operations related to the specific

functionality of each component.

D4.2 ­ Pricing, Trading and Monetization Techniques I Rev. 1.2

FAME Project No. 101092639 ©FAME Consortium

 17 of 40

2.1.2. Components and APIs for ‘Trade and Monetisation’

This document provides an overview of the Trading & Monetisation (TM) module for the FAME

project, detailing the API endpoints available for developers. It is automatically generated from the

API definitions provided in the codebase. Swagger scans the annotations and comments in the API

code and generates a human-readable documentation that includes all available endpoints,

parameters, response formats, and example requests and responses.

Documentation of these APIs can be found in Annex 1 of this document.

2.1.2.1. Setup trading

Description

Creates an Offering Token in the blockchain infrastructure that represents an offering.

Technical Specification

Receives a data structure (Data Structures: Trading Setup Info) that carries all the relevant

information for initializing a blockchain trading environment for a given offering (see P&T:Submit

offering). If the input is formally correct, it immediately returns confirmation to the caller. In the

background, the module turns the input into a blockchain transaction that executes a smart contract.

The smart contract mints the Offering Token that represents the offering.

Figure 11 - Set up Trading API

2.1.2.2. Submit Purchasing Order

Description

Prepares and returns an unsigned transaction of a purchasing order for the interacting user, as

illustrated in Figure 12.

D4.2 ­ Pricing, Trading and Monetization Techniques I Rev. 1.2

FAME Project No. 101092639 ©FAME Consortium

 18 of 40

Figure 12 - Submit Purchasing Order Sequence Diagram

Technical Specification

This operation obtains, in a single user-signed blockchain transaction, A) the transfer of the correct

amount of digital currency from an account owned by the user to an account owned by the publisher,

and B) the transfer of a Data Access Token from an account owned by the FAME system to an account

owned by the user.

Figure 13 - Submit Purchasing Order API

2.1.2.3. Check Clearance

Description

Returns whether one or more trading accounts own a given AID.

Technical Specification

Receives an AID and a list of one or more trading accounts, each identified by its TID. If any of the given

trading accounts is the owner of a currently valid access token linked to the given asset, returns a confirmation.

D4.2 ­ Pricing, Trading and Monetization Techniques I Rev. 1.2

FAME Project No. 101092639 ©FAME Consortium

 19 of 40

Figure 14 - Check Clearance API

2.1.2.4. List Cleared Items

Description

Returns all the owned AIDs of a given trading account.

Technical Specification

Receives the TID of a trading account. Returns the list of AIDs, if any, for which the given TID is the owner

of a currently valid access token.

Figure 15 - List Cleared Items API

2.1.2.5. Retrieve Trading History

Description

The following API from the Bourse contract is used to retrieve the trading history based on the passed

information. Retrieve trading history related to selling and buying with the payment token.

Technical Specification

D4.2 ­ Pricing, Trading and Monetization Techniques I Rev. 1.2

FAME Project No. 101092639 ©FAME Consortium

 20 of 40

GET tm/v1.0/retrieve-trading-history/getNumberOfTradePairs

GET tm/v1.0/retrieve-trading-history/getIthTradePair/ithp

GET tm/v1.0/retrieve-trading-history/getTotalNumVolBuys/ta1/ti1/ta2/ti2

GET tm/v1.0/retrieve-trading-history/getTotalNumVolSells/ta1/ti1/ta2/ti2

GET tm/v1.0/retrieve-trading-history/getNumberOfTraderBuys/tid/ta1/ti1/ta2/ti2

GET tm/v1.0/retrieve-trading-history/getNumberOfTraderSells/tid/ta1/ti1/ta2/ti2

GET tm/v1.0/retrieve-trading-history/getIthTraderSell/ith/tid/ta1/ti1/ta2/ti2

GET tm/v1.0/retrieve-trading-history/getIthTraderBuy/ith/tid/ta1/ti1/ta2/ti2

GET tm/v1.0/retrieve-trading-history/getNumberOfSells/ta1/ti1/ta2/ti2

GET tm/v1.0/retrieve-trading-history/getNumberOfBuys/ta1/ti1/ta2/ti2

GET tm/v1.0/retrieve-trading-history/getIthBuy/ith/ta1/ti1/ta2/ti2

GET tm/v1.0/retrieve-trading-history/getIthSell/ith/ta1/ti1/ta2/ti2

Parameters

ithp : ith trade pair (data token, currency coin)

ta1 : first token address in trade pair

ti2 : first token index in trade pair

ta2 : second token address in trade pair

ti2 : second token index in trade pair

ith : ith buy or sell transaction

Table 1 - Retrieve Trading History API

2.2. Price Advising

FAME is implementing a data-driven pricing advisory mechanism leveraging issuer-provided data,

stakeholder survey responses, and historical pricing realization analytics. In its terminal phase, the

strategy intends to incorporate interest-based metrics derived from the quantification of user

interactions (clicks) with analogous assets on the FDAC platform. Nonetheless, the determination of

asset pricing within the FAME ecosystem remains the prerogative of the client, as explicitly

articulated within the Asset Offering documentation.

2.2.1. C4 Component-level Architecture

Figure 16 presents an overview of the price advising process, its actors, and their interactions.

D4.2 ­ Pricing, Trading and Monetization Techniques I Rev. 1.2

FAME Project No. 101092639 ©FAME Consortium

 21 of 40

Figure 16 - Price Advising C4 Component-level Architecture

2.2.2. API for Pricing Advisory Tool (PAT)

Description

Pricing Advisory Tool, known as the PAT, is a RESTful open API that offers price recommendations

for assets and digital products based on user inputs. It aims to extract both subjective and objective

influences impacting the final price. Additionally, it provides the functionality to offer price ranges

based on similar assets for which prices have historically been determined. Therefore, the end-user

could view the potential price range within which the price of an asset or digital product may fluctuate

(Figure 17).

Technical Specification

D4.2 ­ Pricing, Trading and Monetization Techniques I Rev. 1.2

FAME Project No. 101092639 ©FAME Consortium

 22 of 40

Figure 17 - Price Advisory Sequence Diagram

The publish offering screen directly utilizes the REST open API of PAT. Based on end-user inputs,

a GET request is issued to retrieve questionnaire questions upon clicking the PAT button.

D4.2 ­ Pricing, Trading and Monetization Techniques I Rev. 1.2

FAME Project No. 101092639 ©FAME Consortium

 23 of 40

Figure 18 - Publish Offering Screen

The calculation flow for an asset's price proceeds through multiple phases:

1. At the outset, an asset-type-specific questionnaire is provided to the end-user, with the questions

tailored based on the nature of the asset in question.

2. System retrieves responses from users through a REST API.

3. Based on the responses and data available about the asset, information is provided to the SAT

interface responsible for identifying asset similarities - this step is contingent on the existence of

preceding assets.

4. Subsequently, a call is made to analyse the trading history for realization prices of similar assets

- this step is contingent on the existence of preceding assets.

5. Upon acquiring all necessary inputs, the calculation of the recommended price for the end-user is

conducted.

Asset-type-specific questions with various response types are sent back to the frontend, where they

are displayed to the end-user.

Figure 19 - Asset-type specific questionnaire

D4.2 ­ Pricing, Trading and Monetization Techniques I Rev. 1.2

FAME Project No. 101092639 ©FAME Consortium

 24 of 40

After being completed by the user, the responses are extracted and sent back to PAT for the

computation of the recommended asset price. Upon executing the calculation logic, the recommended

price is displayed to the end-user via the frontend. The user then has the option to utilize the suggested

price or enter their own.

Figure 20 - Price Recommendation Interface

Table 2 - List of suggested questions for pricing data collection

0 What is the asset like? Dataset Digital Product

QG Rank Question Datasets Questions digital product Type of answer

Yes/No Numeric Points

(categorical/

Likert scale)

1 1 Will the information in the

asset be regularly updated?
Will the information in the digital

product regularly updated?
x

1 2 How suitable are data in the

asset for a wide range of

analyses and interpretations?

 x

1 3 Is it possible to

manage/read/update the

data without additional

software?

Is it possible to

manage/read/update the digital

product without additional

software?

x

1 4 What computational power is

required to process the digital

product?

 x

2 1 Is the data clean? (1 if yes, 0 if

it is needed to clean the data

(redundancy, errors, typos...)?

 x

2 2 How old is the information in

the dataset (months)?
How long ago has the digital

product most recently been

reviewed? (months)?

 x

2 3 When was dataset

created/compiled (months)?
How old is the digital product

(month)?
 x

D4.2 ­ Pricing, Trading and Monetization Techniques I Rev. 1.2

FAME Project No. 101092639 ©FAME Consortium

 25 of 40

2 4 Are the data in the dataset

manipulated (adjusted) in any

way? (Is the data raw?)

 x

2 5 Does dataset contain unique

identifier so that it can be

connected to other available

datasets?

 x

2 6 How credible is the source of

the asset?
How credible is the

source/creator of the digital

product?

 x

2 7 Have these data been

validated against independent

sources or standards?

Has the digital product been

validated against independent

sources or standards?

x

3 1 Is the dataset complete (i.e.,

without any missing

information)? (Is maximum

possible completeness

achieved)?

 x

3 2 Is dataset clearly described

(dictionary/metadata)?
Is the product supported by

descriptive information

(metadata, dictionary, subtitles,

documentation)...

x

4 1 How much resources were

required to assemble and

prepare the asset in question

(in MD)?

How much resources were

required to assemble and prepare

the digital product in question (in

MD)?

 x

4 2 What is the estimated number

of customers?
What is the estimated number of

customers?

4 3 How many information points

does the asset contain?
 x

4 4 How much capacity space is

needed to store this data (in

GB)?

How much capacity space is

needed to store this digital

product (in GB)?

 x

5 1 Is the dataset unique/original? Is the digital product

unique/original?
 x

 2 Are there copyrights related

to the data asset?

Are there copyrights related to

the digital product?

x

6 1 Was the renewable energy

used in the process of asset

creation?

Was the renewable energy used

in the process of the product

creation?

x

7 1 What is the digital product type

(8 categories)?
 X

D4.2 ­ Pricing, Trading and Monetization Techniques I Rev. 1.2

FAME Project No. 101092639 ©FAME Consortium

 26 of 40

Table 1 above summarizes specific questions used to calculate intrinsic value of the digital asset (this

is Value-based pricing mechanism) for two broad groups: datasets and digital products. The value of

the digital asset is based on the several dimensions - Estimated cost for the customer, quality measured

by: Accuracy and validity of digital asset and Completeness of digital asset; Costs of creation,

Volume of customers, Uniqueness/Rarity, Environmental sustainability (CO2).

For this demonstrator in MVP phase, we use PAT as a tool to navigate business offering creator in

setting price by calculating static intrinsic value of the asset. For next version of D4.2 we will use

dynamic pricing mechanisms, such as skimming and penetration pricing as well as demand-based

pricing used in auctions for digital assets.

2.2.3. Similarity Analysis Tool (SAT)

Description

The Similarity Analysis Tool (SAT), is part of PAT API which purpose is to search for similar assets

for which historical sales have been executed, i.e., there must already exist completed sales of the

given asset type. Inputs to SAT include responses from a questionnaire as well as information from

the asset offering such as Title and Asset Description, Business Model selected for the asset. Analysis

of human-readable text from the title and asset description by an AI-based model creates subsets of

similar asset types which can be further used to perform similarity analysis be used to find relevant

similar assets.

Formulation of SAT:

Figure 21 - SAT formulation

where l, m, and n are numbers of logical, continuos and ordinal variables, A denotes values of the

responses received on the items in questionnaire (Table 1), and w denote weights associated with

each question.

As for the weights, there is no guidance in the literature. Equal weights shall be used at the beginning

which may further be refined based on domain expertise.

Note: This part will be implemented into the PAT and is not currently a part of it.

Technical Specification

The process occurs in two steps.:

1. Preprocessing and Clustering for Subgroup Identification:

The initial phase leverages Natural Language Processing (NLP) techniques to extract and preprocess

textual data from user-provided asset titles and descriptions within the Asset Offering interface. This

D4.2 ­ Pricing, Trading and Monetization Techniques I Rev. 1.2

FAME Project No. 101092639 ©FAME Consortium

 27 of 40

information undergoes a clustering analysis employing machine learning algorithms to systematically

classify assets into finely segmented subgroups. This classification is based on the semantic and

contextual similarities within the asset metadata, facilitating the delineation of discrete asset clusters

for subsequent analysis.

2. Similarity Analysis within Identified Subgroups:

Following the clustering phase, the second step initiates a similarity analysis leveraging advanced

algorithmic comparisons within each identified subgroup. This analysis employs vector space

modelling and a composite similarity metric (based on the concepts such as cosine similarity,

hamming distance, and Euclidean distance) to quantitatively assess the closeness of each asset to the

target asset under consideration. The objective is to pinpoint assets that exhibit the highest degrees of

similarity to the target, based on the multidimensional feature space generated from the asset's

descriptive metadata.

This structured, two-step methodology enables a granular and precise identification of similar assets

within a vast dataset, facilitating targeted asset comparisons and enhancing the efficacy of asset-

related decision-making processes.

2.3. Semantic Search Engine

2.3.1. C4 Component-level Architecture

Figure 22 - Semantic Search Engine C4 Component-level Architecture

2.3.2. Components

1. User Query: This is where the search begins with the user input. The user defines what

they're searching for using a textual query, an input sheet, or both. This input acts as the

D4.2 ­ Pricing, Trading and Monetization Techniques I Rev. 1.2

FAME Project No. 101092639 ©FAME Consortium

 28 of 40

basis for generating a set of parameters that the search engine will use to retrieve relevant

results.

2. Query Processing: In this stage, the search engine processes the user's input. It extracts the

search terms and any additional parameters necessary for the FDAC API call and generates

an authentication header to ensure secure API communication.

3. Indexing Engine: Here, the engine interacts with the FDAC's asset metadata. It indexes

important information to enable efficient and quick searches.

4. Results: The final output of the engine presents the user with ranked search results. It uses

semantic analysis to interpret the user's query and combines this with the trading and pricing

schemes to retrieve a list of assets. The results are ordered based on relevance to the query

and potentially by the trading and pricing schemes when integrated into the ranking logic.

2.3.3. External components

1. FDAC's API Endpoint: This component represents the interface through which the search

engine communicates with the FDAC. It sends requests to this endpoint to retrieve asset

metadata that matches the user's search criteria.

2. Trading & Pricing Schemes: This component influences the outcome by providing

additional data that can affect the ranking of search results, such as price suggestions based

on the asset's trading and pricing schemes.

2.3.3. API Endpoint Structure

The semantic search engine’s API endpoint serves as an intermediary that formulates and directs

queries to the Federated Data Asset Catalogue (FDAC). When a user submits a query, the endpoint

constructs a structured request in JSON format, capturing the nuances of the user's search intent. Each

query consists of key-value pairs where "values" is an array of search criteria.

The "term" parameter is the primary string the user wants to search for across the FDAC database. It

acts as the core of the search, directing the engine to retrieve assets related to this term. Accompanying

the term, "filters" can refine search results further. These filters are specified as arrays with a "type"

attribute indicating the category of the filter, such as "owner" for asset ownership.

An "expand" Boolean flag determines the depth of information returned. If set to true, the engine

includes the complete JSON objects of content within the results. When false, only the IDs of the

assets are returned, making for a more lightweight data transfer.

Lastly, "outputFilter" designates the type of content to return from the query. In this case, setting it

to "components" instructs the engine to restrict results to data assets specifically, excluding other

content types that may exist within the FDAC.

D4.2 ­ Pricing, Trading and Monetization Techniques I Rev. 1.2

FAME Project No. 101092639 ©FAME Consortium

 29 of 40

Figure 23 - Semantic Search Engine API endpoint

2.3.4. Integration with FDAC

The current FDAC integration with the semantic search engine enables it to provide lists of data assets

that align with the input search criteria. The engine retrieves and ranks these results based on semantic

relevance, using metadata that includes names, summaries, and detailed descriptions. The results are

enhanced with tags that categorize and describe each asset's function and application. Developers'

details and relevant imagery from the assets' media galleries are also included, alongside visibility

status, to present a complete picture of each asset. This structured approach facilitates a user-focused

search experience, allowing for both broad and specific queries within the FDAC's diverse range of

data assets.

D4.2 ­ Pricing, Trading and Monetization Techniques I Rev. 1.2

FAME Project No. 101092639 ©FAME Consortium

 30 of 40

Figure 24 - Integrated SSE / FDAC API interface

2.3.5. State of PAT Integration

The integration with the PAT module is in the planning phase. At this stage, the engine is being

prepared to handle additional data fields that will be provided by PAT module, like price ranges of

assets. Although the exact method of this integration is yet to be finalized, the endpoint will be

designed to update seamlessly with pricing information fields to present comprehensive data to the

user.

2.3.6. Search Interface & User Journey

Figure 25 - Semantic Search Interface (1)

D4.2 ­ Pricing, Trading and Monetization Techniques I Rev. 1.2

FAME Project No. 101092639 ©FAME Consortium

 31 of 40

Figure 26 - Semantic Search Interface (2)

The FAME semantic search interface provides an intuitive user journey for discovering and selecting

data assets. It begins with the input box titled "Search Assets..." where users can enter keywords

related to the assets they're looking for. Accompanying this are additional filtering options to refine

their search:

1. Asset Price Range: A slider allows users to define a minimum and maximum price range,

tailoring the search to fit their budget or value expectation.

2. Expand: A dropdown where users can choose to expand the details in the search results,

typically toggled to 'True' for comprehensive information.

3. Output Filter: This dropdown enables users to refine the search output based on categories

such as 'All', or specific types of assets within the FDAC.

4. Publisher: An input field where users can specify the owner or creator of the assets, helping

them to find content from a preferred source.

5. Type of Asset: A dropdown menu that filters results according to the asset type, such as

reports, datasets, models, etc., making the search more domain specific.

After setting the desired parameters, clicking the "Search" button triggers the system to fetch and

display assets that match the user's criteria, aligning with both semantic relevance and pricing

considerations. This design fosters a focused and efficient asset discovery process within the FAME

environment.

2.3.7. Baseline Technologies in Use

The semantic search engine's current iteration has been built using Flask, a Python micro-framework

that's well-suited for small to medium web applications. The choice of Flask allows for the flexibility

and rapid development needed in the early stages of project growth. The frontend interaction is

managed through JavaScript, providing a dynamic user interface without overburdening the server

side with processing.

D4.2 ­ Pricing, Trading and Monetization Techniques I Rev. 1.2

FAME Project No. 101092639 ©FAME Consortium

 32 of 40

The communication between the search engine and the FDAC uses a RESTful API design, with JSON

as the data format. This ensures a smooth and effective exchange of data. Python’s Requests library

manages the HTTP interactions, and the data processing leverages Python's ecosystem, including

libraries like NLTK for natural language processing tasks.

D4.2 ­ Pricing, Trading and Monetization Techniques I Rev. 1.2

FAME Project No. 101092639 ©FAME Consortium

 33 of 40

3. Modules Installation Guide

3.1 Price Advisory Tool Installation Guide

PAT is implemented in Node.js using Nest framework TypeScript starter repository

For installation is necessary to be inside the root folder with code

To install all the necessary packages, run the following in terminal:

npm install

To start server with swagger, run the following command in terminal:

npm run start

Then the localhost:7007/swagger page is available with all API services

Figure 27 - Price Advisory API services

3.2 Trading and Monetization Installation Guide

3.2.1. Overview

Project FAME's Smart Contract Interactions provided by FTS & TRB.

The code repository can be found on FAME / Framework / tm · GitLab (infinitech-h2020.eu)

3.2.2. Development Getting Started

Installation

To install all the necessary packages, run the following in terminal:

npm install

Docker Image Preparation and Publishing

This project is configured to use Docker for creating and managing the application's container. The

following npm scripts are provided to simplify Docker operations such as building, pushing, and

running the Docker image locally.

D4.2 ­ Pricing, Trading and Monetization Techniques I Rev. 1.2

FAME Project No. 101092639 ©FAME Consortium

 34 of 40

Building the Docker Image

To build the Docker image for this project, run:

npm run docker:build

This command executes a Docker build operation with the tag

harbor.gftinnovation.eu/fame/tm:latest,, using the Dockerfile located at

devops/Dockerfile. Ensure you are in the project root directory when running this command.

Pushing the Docker Image to a Registry

Before pushing the Docker image, you must be logged in to the Docker registry. To push the built

image to the harbor.infinitech-h2020.eu registry, run:

npm run docker:push

This script will first log you into the harbor.gftinnovation.eu registry (you'll be prompted for

your credentials), and then push the harbor.infinitech-h2020.eu/fame/tm:latest image

to the registry.

Latest docker images will be published here:

https://harbor.gftinnovation.eu/harbor/projects/40/repositories/tm

Running the Docker Image

To run the Docker image locally, use:

npm run docker:run

This command will start a container named fame-tm from the harbor.infinitech-

h2020.eu/fame/tm:latest image. The application inside the container will be accessible

through port 3000 on your local machine, as this port is mapped to port 3000 in the container.

Note: The --rm flag is used to automatically remove the container when it is stopped. This helps in

avoiding accumulation of stopped containers.

3.2.3. Usage

Deploying Smart Contracts (and upgrading)

To deploy the necessary contracts:

npm run deploy:hardhat:besu

To upgrade the DataAccess (ERC-1155) logic contract:

npm run upgrade:hardhat:besu

Running Swagger API (endpoints)

To run:

D4.2 ­ Pricing, Trading and Monetization Techniques I Rev. 1.2

FAME Project No. 101092639 ©FAME Consortium

 35 of 40

npm run start:dev

After that to access the swagger documentation and interactions, use this URL: http://URL/swagger

3.3. Semantic Search Engine Installation Guide

1. Install Node.js on Windows:

• Visit the official [Node.js website] (https://nodejs.org/).

• Download the Windows Installer (.msi) for the latest LTS version.

• Run the downloaded installer, which will guide you through the setup. Default settings

should work for most use cases.

• After installation, open the Command Prompt to verify Node.js and npm:

 >>> node -v

 >>> npm -v

These commands should print the versions of Node.js and npm installed, confirming the installation

was successful.

2. Clone the Project Repository:

• Open the Command Prompt and navigate to the directory where you want your project.

• Use the following git command to clone your repository (given URL is an example):

 >>> git clone https://git-lab.com/Fame_Search.gi

3. Install Project Dependencies:

• Navigate into your project director:

 >>> cd your-project

• Install all dependencies defined in your “package.json” by running:

 >>> npm install

This command reads the “package.json” file and installs all the necessary packages for your project

to run. It may take a few minutes depending on the number of dependencies.

4. Serve Your Application:

• Once the dependencies are installed, you can serve your application on a local development

server by running:

 >>> npm start

• The “start” script in your “package.json” is configured to use “vue-cli-service” to serve

your app. This will compile your Vue application and serve it usually at

“http://localhost:8080”.

D4.2 ­ Pricing, Trading and Monetization Techniques I Rev. 1.2

FAME Project No. 101092639 ©FAME Consortium

 36 of 40

4. Conclusions

In this document, we described the logic and technical specifications of the first release of 3 modules

contributing to the Fame federated marketplace: Trading and Monetisation (T&M), Price Advisory

(PAT, SAT) and Semantic Search, all playing an essential role in the Asset Publishing and Offering

Definition use cases. The demonstrators, which is the result of activities belonging T4.2, T4.3 and

T4.4, as well as to several other tasks in WP4 and WP3, were presented – from the end user’s

perspective.

It should be clarified that this is just a “minimum viable product”, as it only supports the very basic

features of the FAME platform and does not have the technology readiness level that is expected from

the final release. The platform will have to gain other key capabilities in the coming months, as all

will be combined to the end user in the ‘Dashboard’ of the FAME integrated marketplace platform.

We also need to understand that the overall Fame federated marketplace can only work when

combined with a number of administrative features – like digital currency management, catalogue

editing, etc. These capabilities will be mostly enabled by other platform modules, in particular P&T

and Operational Governance (GOV). The assembly of all work is planned for the second part of the

FAME project, and will be finalized in WP2, where the integration and front-end development

activities (“Dashboard”) belong.

D4.2 ­ Pricing, Trading and Monetization Techniques I Rev. 1.2

FAME Project No. 101092639 ©FAME Consortium

 37 of 40

Annex 1

Components of APIs for Trade & Monetisation

Swagger documentation

D4.2 ­ Pricing, Trading and Monetization Techniques I Rev. 1.2

FAME Project No. 101092639 ©FAME Consortium

 38 of 40

D4.2 ­ Pricing, Trading and Monetization Techniques I Rev. 1.2

FAME Project No. 101092639 ©FAME Consortium

 39 of 40

D4.2 ­ Pricing, Trading and Monetization Techniques I Rev. 1.2

FAME Project No. 101092639 ©FAME Consortium

 40 of 40

D4.2 ­ Pricing, Trading and Monetization Techniques I Rev. 1.2

FAME Project No. 101092639 ©FAME Consortium

